Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2400117, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548667

RESUMO

Increased sugar concentrations on mucosal surfaces display risk factors for infections. This study aims to clarify sugar monitoring in the urethra. Urethral tuft cells (UTC) are known sentinels monitoring the urethral lumen for potentially harmful substances and initiating protective mechanisms. Next-generation sequencing (NGS), RT-PCR, and immunohistochemistry show expression of the taste receptor Tas1R3 in murine UTC, a crucial component of the classical sweet detection pathway. Isolated UTC respond to various sugars with an increase of intracellular [Ca2+]. The Tas1R3 inhibitor gurmarin and Tas1R3 deletion reduces these responses. Utilizing mice lacking UTC, glibenclamide, a K+-ATP channel antagonist, and phlorizin, a SGLT1 inhibitor, reveal an additional Tas1R3 independent sweet detection pathway. Inhibition of both pathways abrogates the sugar responses. Rat cystometry shows that intraurethral application of sucrose and glucose increases detrusor muscle activity Tas1R3 dependently. Sugar monitoring in the urethra occurs via two distinct pathways. A Tas1R3 dependent pathway, exclusive to UTC, and a Tas1R3 independent sweet detection pathway, which can be found both in UTC and in other urethral epithelial cells.

2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474126

RESUMO

CD177 is a glycosyl phosphatidyl inositol (GPI)-linked, neutrophil-specific glycoprotein that in 3-5% of normal individuals is absent from all neutrophils. The molecular mechanism behind the absence of CD177 has not been unravelled completely. Here, we analyse the impact of the recently described CD177 c.1291G>A variant on CD177 expression. Recombinant CD177 c.1291G>A was expressed in HEK293F cells and its expression on the cell surface, inside the cell, and in the culture supernatant was investigated. The CD177 c.1291G>A protein was characterised serologically and its interaction with proteinase 3 (PR3) was demonstrated by confocal laser scanning microscopy. Our experiments show that CD177 c.1291G>A does not interfere with CD177 protein biosynthesis but affects the membrane expression of CD177, leading to very low copy numbers of the protein on the cellular surface. The mutation does not interfere with the ability of the protein to bind PR3 or human polyclonal antibodies against wild-type CD177. Carriers of the c.1291G>A allele are supposed to be phenotyped as CD177-negative, but the protein is present in soluble form. The presence of CD177 c.1291A leads to the production of an unstable CD177 protein and an apparent "CD177-null" phenotype.


Assuntos
Isoantígenos , Receptores de Superfície Celular , Humanos , Receptores de Superfície Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Alelos , Membrana Celular/metabolismo , Mieloblastina/genética , Fenótipo , Isoantígenos/genética , Neutrófilos/metabolismo
3.
Sci Immunol ; 9(92): eabq4341, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306414

RESUMO

The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.


Assuntos
Mucosa Olfatória , 60419 , Humanos , Camundongos , Animais , Mucosa Olfatória/metabolismo , Mucosa Nasal , Células Epiteliais/metabolismo , Proliferação de Células , Quinases Semelhantes a Duplacortina
4.
Sci Adv ; 9(31): eadg8842, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531421

RESUMO

Host-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cß2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca2+ wave spreading radially over the tracheal epithelium through a sequential signaling process. First, brush cells release acetylcholine, which excites nearby cells via muscarinic acetylcholine receptors. From there, the Ca2+ wave propagates through gap junction signaling, reaching also distant ciliated and secretory cells. These effector cells translate activation into enhanced ciliary activity and Cl- secretion, which are synergistic in boosting mucociliary clearance, the major innate defense mechanism of the airways. Our data establish tracheal brush cells as a central hub in triggering a global epithelial defense program in response to a danger-associated metabolite.


Assuntos
Acetilcolina , Traqueia , Camundongos , Animais , Traqueia/metabolismo , Transdução de Sinais , Succinatos/metabolismo , Epitélio/metabolismo
5.
Sci Immunol ; 7(69): eabf6734, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245090

RESUMO

The gallbladder stores bile between meals and empties into the duodenum upon demand and is thereby exposed to the intestinal microbiome. This exposure raises the need for antimicrobial factors, among them, mucins produced by cholangiocytes, the dominant epithelial cell type in the gallbladder. The role of the much less frequent biliary tuft cells is still unknown. We here show that propionate, a major metabolite of intestinal bacteria, activates tuft cells via the short-chain free fatty acid receptor 2 and downstream signaling involving the cation channel transient receptor potential cation channel subfamily M member 5. This results in corelease of acetylcholine and cysteinyl leukotrienes from tuft cells and evokes synergistic paracrine effects upon the epithelium and the gallbladder smooth muscle, respectively. Acetylcholine triggers mucin release from cholangiocytes, an epithelial defense mechanism, through the muscarinic acetylcholine receptor M3. Cysteinyl leukotrienes cause gallbladder contraction through their cognate receptor CysLTR1, prompting emptying and closing. Our results establish gallbladder tuft cells as sensors of the microbial metabolite propionate, initiating dichotomous innate defense mechanisms through simultaneous release of acetylcholine and cysteinyl leukotrienes.


Assuntos
Acetilcolina , Propionatos , Acetilcolina/metabolismo , Células Epiteliais/metabolismo , Leucotrienos
6.
Cell Tissue Res ; 390(1): 35-49, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34762185

RESUMO

The conducting airways are lined by distinct cell types, comprising basal, secretory, ciliated, and rare cells, including ionocytes, solitary cholinergic chemosensory cells, and solitary and clustered (neuroepithelial bodies) neuroendocrine cells. Airway neuroendocrine cells are in clinical focus since they can give rise to small cell lung cancer. They have been implicated in diverse functions including mechanosensation, chemosensation, and regeneration, and were recently identified as regulators of type 2 immune responses via the release of the neuropeptide calcitonin gene-related peptide (CGRP). We here assessed the expression of the chemokine CXCL13 (B cell attracting chemokine) by these cells by RT-PCR, in silico analysis of publicly available sequencing data sets, immunohistochemistry, and immuno-electron microscopy. We identify a phenotype of neuroendocrine cells in the naïve mouse, producing the chemokine CXCL13 predominantly in solitary neuroendocrine cells of the tracheal epithelium (approx. 70% CXCL13+) and, to a lesser extent, in the solitary neuroendocrine cells and neuroepithelial bodies of the intrapulmonary bronchial epithelium (< 10% CXCL13+). In silico analysis of published sequencing data of murine tracheal epithelial cells was consistent with the results obtained by immunohistochemistry as it revealed that neuroendocrine cells are the major source of Cxcl13-mRNA, which was expressed by 68-79% of neuroendocrine cells. An unbiased scRNA-seq data analysis of overall gene expression did not yield subclusters of neuroendocrine cells. Our observation demonstrates phenotypic heterogeneity of airway neuroendocrine cells and points towards a putative immunoregulatory role of these cells in bronchial-associated lymphoid tissue formation and B cell homeostasis.


Assuntos
Quimiocina CXCL13 , Células Neuroendócrinas , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colinérgicos , Células Epiteliais/metabolismo , Pulmão/metabolismo , Camundongos , Células Neuroendócrinas/metabolismo , RNA Mensageiro/genética , Traqueia
7.
Cell Tissue Res ; 385(1): 21-35, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33616728

RESUMO

Cholinergic chemosensory cells (CCC) are infrequent epithelial cells with immunosensor function, positioned in mucosal epithelia preferentially near body entry sites in mammals including man. Given their adaptive capacity in response to infection and their role in combatting pathogens, we here addressed the time points of their initial emergence as well as their postnatal development from first exposure to environmental microbiota (i.e., birth) to adulthood in urethra and trachea, utilizing choline acetyltransferase (ChAT)-eGFP reporter mice, mice with genetic deletion of MyD88, toll-like receptor-2 (TLR2), TLR4, TLR2/TLR4, and germ-free mice. Appearance of CCC differs between the investigated organs. CCC of the trachea emerge during embryonic development at E18 and expand further after birth. Urethral CCC show gender diversity and appear first at P6-P10 in male and at P11-P20 in female mice. Urethrae and tracheae of MyD88- and TLR-deficient mice showed significantly fewer CCC in all four investigated deficient strains, with the effect being most prominent in the urethra. In germ-free mice, however, CCC numbers were not reduced, indicating that TLR2/4-MyD88 signaling, but not vita-PAMPs, governs CCC development. Collectively, our data show a marked postnatal expansion of CCC populations with distinct organ-specific features, including the relative impact of TLR2/4-MyD88 signaling. Strong dependency on this pathway (urethra) correlates with absence of CCC at birth and gender-specific initial development and expansion dynamics, whereas moderate dependency (trachea) coincides with presence of first CCC at E18 and sex-independent further development.


Assuntos
Técnicas Biossensoriais/métodos , Colinérgicos/metabolismo , Células Epiteliais/metabolismo , Imunidade Inata/imunologia , Traqueia/fisiologia , Uretra/fisiologia , Animais , Masculino , Camundongos
8.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294408

RESUMO

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Assuntos
Acetilcolina/imunologia , Proteínas de Bactérias/farmacologia , Cílios/imunologia , Depuração Mucociliar/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Canais de Cátion TRPM/imunologia , Traqueia/imunologia , Acetilcolina/metabolismo , Animais , Proteínas de Bactérias/imunologia , Transporte Biológico , Cílios/efeitos dos fármacos , Cílios/metabolismo , Feminino , Formiatos/metabolismo , Expressão Gênica , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética/métodos , Comunicação Parácrina/imunologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Papilas Gustativas/imunologia , Papilas Gustativas/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/patologia , Virulência
9.
Int Immunopharmacol ; 84: 106496, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304995

RESUMO

Mucociliary clearance, the continuous removal of mucus-trapped particles by cilia-driven directed transport of the airway lining fluid, is the primary innate defense mechanism of the airways. It is potently activated by acetylcholine (ACh) addressing muscarinic receptors with a currently less defined role of nicotinic ACh receptors (nAChR). We here set out to determine their contribution in driving ciliary activity in an explanted mouse trachea preparation utilizing selected agonists and antagonists and nAChR-subunit deficient mice. Nicotine (100 µM) induced an increase in ciliary beat frequency, accompanied by a sharp, but not long lasting increase in particle transport speed (PTS) on the mucosal surface showing marked desensitization within the next 30 min. Nicotine-induced PTS acceleration was sensitive to the general nAChR inhibitors mecamylamine and d-tubocurarine as well as to the α3ß4-nAChR antagonist α-conotoxin AulB, but not to other antagonists primarily addressing α3ß2-nAChR or α4-, α7- and α9-containing nAChR. Agonists at α3ß*-nAChR (epibatidine, cytisine), but not cotinine mimicked the effect. Tracheas from mice with genetic deletion of nAChR subunits α5, α7, α9, α10, α9/10, and ß2 retained full PTS response to nicotine, whereas this was entirely lost in tracheas from mice lacking the ß4-subunit. Collectively, our data show that nicotinic stimulation of α3ß4-nAChR acutely increases PTS to the same extent as the established strong activator ATP. In view of the marked desensitization observed in the present setting, the physiological relevance of these receptors in adapting mucociliary clearance to rapidly changing endogenous or environmental stimuli remains open.


Assuntos
Cílios/efeitos dos fármacos , Cílios/metabolismo , Movimento/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Traqueia/efeitos dos fármacos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Subunidades Proteicas/fisiologia , Receptores Nicotínicos/deficiência
10.
J Infect Dis ; 222(9): 1505-1516, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31970394

RESUMO

BACKGROUND: Bacterial toxins disrupt plasma membrane integrity with multitudinous effects on host cells. The secreted pore-forming toxin listeriolysin O (LLO) of the intracellular pathogen Listeria monocytogenes promotes egress of the bacteria from vacuolar compartments into the host cytosol often without overt destruction of the infected cell. Intracellular LLO activity is tightly controlled by host factors including compartmental pH, redox, proteolytic, and proteostatic factors, and inhibited by cholesterol. METHODS: Combining infection studies of L. monocytogenes wild type and isogenic mutants together with biochemical studies with purified phospholipases, we investigate the effect of their enzymatic activities on LLO. RESULTS: Here, we show that phosphocholine (ChoP), a reaction product of the phosphatidylcholine-specific phospholipase C (PC-PLC) of L. monocytogenes, is a potent inhibitor of intra- and extracellular LLO activities. Binding of ChoP to LLO is redox-independent and leads to the inhibition of LLO-dependent induction of calcium flux, mitochondrial damage, and apoptosis. ChoP also inhibits the hemolytic activities of the related cholesterol-dependent cytolysins (CDC), pneumolysin and streptolysin. CONCLUSIONS: Our study uncovers a strategy used by L. monocytogenes to modulate cytotoxic LLO activity through the enzymatic activity of its PC-PLC. This mechanism appears to be widespread and also used by other CDC pore-forming toxin-producing bacteria.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Listeria monocytogenes/efeitos dos fármacos , Fosforilcolina/farmacologia , Apoptose , Cálcio/metabolismo , Caspase 3/metabolismo , Células HeLa , Humanos , Listeria monocytogenes/enzimologia , Listeria monocytogenes/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Tissue Eng Part A ; 26(7-8): 432-440, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31696788

RESUMO

Three-dimensional respiratory tissue models have been generated using, for example, human primary airway epithelial cells (hAEC) or respective cell lines. To investigate ciliopathies, such as primary ciliary dyskinesia, the presence of functional kinocilia in vitro is an essential prerequisite. Since access to hAEC of healthy donors is limited, we aimed to identify a respiratory epithelial cell line that is capable to display functional kinocilia on at least 60% of the apical surface. Thus, we cultured four different human respiratory cell lines with human primary airway fibroblasts under airlift conditions, characterized the morphology, and analyzed ciliary function. Only one of the tested cell lines showed beating kinocilia; however, <10% of the whole surface was covered and ciliary beating was undirected. Positive control tissue models using hAEC and fibroblasts displayed expected directed ciliary beating pattern around 11 Hz. Our data show that the available cell lines are not suitable for basic and applied research questions whenever functional kinocilia are required and that, rather, hAEC- or human induced pluripotent stem cell-derived tissue models need to be generated. Impact Statement To study ciliopathies or Bordetella pertussis infection in vitro, three-dimensional respiratory tissue models with functional kinocilia covering at least 60% of the model's surface are mandatory. We cultured four respiratory cell lines on a fibroblast-loaded biological scaffold and showed that none of them met this requirement. In contrast, primary airway cell-derived models sufficiently reflected the mucociliary phenotype. To further search for an alternative to primary respiratory cells, investigations on other cell lines should be conducted or even new cell lines have to be generated.


Assuntos
Corpo Ciliar/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Adulto , Idoso , Bordetella pertussis/patogenicidade , Linhagem Celular , Células Cultivadas , Corpo Ciliar/metabolismo , Ciliopatias/metabolismo , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade
12.
Front Cell Dev Biol ; 6: 89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159312

RESUMO

Cholinergic polymodal chemosensory cells in the mammalian urethra (urethral brush cells = UBC) functionally express the canonical bitter and umami taste transduction signaling cascade. Here, we aimed to determine whether UBC are functionally equipped for the perception of salt through ENaC (epithelial sodium channel). Cholinergic UBC were isolated from ChAT-eGFP reporter mice (ChAT = choline acetyltransferase). RT-PCR showed mRNA expression of ENaC subunits Scnn1a, Scnn1b, and Scnn1g in urethral epithelium and isolated UBC. Scnn1a could also be detected by next generation sequencing in 4/6 (66%) single UBC, two of them also expressed the bitter receptor Tas2R108. Strong expression of Scnn1a was seen in some urothelial umbrella cells and in 65% of UBC (30/46 cells) in a Scnn1a reporter mouse strain. Intracellular [Ca2+] was recorded in isolated UBC stimulated with the bitter substance denatonium benzoate (25 mM), ATP (0.5 mM) and NaCl (50 mM, on top of 145 mM Na+ and 153 mM Cl- baseline in buffer); mannitol (150 mM) served as osmolarity control. NaCl, but not mannitol, evoked an increase in intracellular [Ca2+] in 70% of the tested UBC. The NaCl-induced effect was blocked by the ENaC inhibitor amiloride (IC50 = 0.47 µM). When responses to both NaCl and denatonium were tested, all three possible positive response patterns occurred in a balanced distribution: 42% NaCl only, 33% denatonium only, 25% to both stimuli. A similar reaction pattern was observed with ATP and NaCl as test stimuli. About 22% of the UBC reacted to all three stimuli. Thus, NaCl evokes calcium responses in several UBC, likely involving an amiloride-sensitive channel containing α-ENaC. This feature does not define a new subpopulation of UBC, but rather emphasizes their polymodal character. The actual function of α-ENaC in cholinergic UBC-salt perception, homeostatic ion transport, mechanoreception-remains to be determined.

13.
Molecules ; 23(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096783

RESUMO

Phosphocholine-modified bacterial cell wall components are virulence factors enabling immune evasion and permanent colonization of the mammalian host, by mechanisms that are poorly understood. Recently, we demonstrated that free phosphocholine (PC) and PC-modified lipooligosaccharides (PC-LOS) from Haemophilus influenzae, an opportunistic pathogen of the upper and lower airways, function as unconventional nicotinic agonists and efficiently inhibit the ATP-induced release of monocytic IL-1ß. We hypothesize that H. influenzae PC-LOS exert similar effects on pulmonary epithelial cells and on the complex lung tissue. The human lung carcinoma-derived epithelial cell lines A549 and Calu-3 were primed with lipopolysaccharide from Escherichia coli followed by stimulation with ATP in the presence or absence of PC or PC-LOS or LOS devoid of PC. The involvement of nicotinic acetylcholine receptors was tested using specific antagonists. We demonstrate that PC and PC-LOS efficiently inhibit ATP-mediated IL-1ß release by A549 and Calu-3 cells via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Primed precision-cut lung slices behaved similarly. We conclude that H. influenzae hijacked an endogenous anti-inflammatory cholinergic control mechanism of the lung to evade innate immune responses of the host. These findings may pave the way towards a host-centered antibiotic treatment of chronic airway infections with H. influenzae.


Assuntos
Trifosfato de Adenosina/farmacologia , Células Epiteliais/metabolismo , Haemophilus influenzae/química , Interleucina-1beta/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Pulmão/citologia , Fosforilcolina/química , Células A549 , Animais , Células Epiteliais/efeitos dos fármacos , Humanos , Camundongos , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo
14.
Sci Rep ; 8(1): 5681, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29632402

RESUMO

Several species of the Gram-negative genus Bordetella are the cause of respiratory infections in mammals and birds, including whooping cough (pertussis) in humans. Very recently, a novel atypical species, Bordetella pseudohinzii, was isolated from laboratory mice. These mice presented no obvious clinical symptoms but elevated numbers of neutrophils in bronchoalveolar lavage fluid and inflammatory signs in histopathology. We noted that this species can occur at high prevalence in a mouse facility despite regular pathogen testing according to the FELASA-recommendations. Affected C57BL/6 J mice had, in addition to the reported pulmonary alterations, tracheal inflammation with reduced numbers of ciliated cells, slower ciliary beat frequency, and largely (>50%) compromised cilia-driven particle transport speed on the mucosal surface, a primary innate defence mechanism. In an in vitro-model, Bordetella pseudohinzii attached to respiratory kinocilia, impaired ciliary function within 4 h and caused epithelial damage within 24 h. Regular testing for this ciliotropic Bordetella species and excluding it from colonies that provide mice for lung research shall be recommended. On the other hand, controlled colonization and infection with Bordetella pseudohinzii may serve as an experimental model to investigate mechanisms of mucociliary clearance and microbial strategies to escape from this primary innate defence response.


Assuntos
Infecções por Bordetella/veterinária , Bordetella/fisiologia , Infecções Respiratórias/veterinária , Doenças dos Roedores/microbiologia , Traqueia/microbiologia , Animais , Bordetella/classificação , Bordetella/isolamento & purificação , Bordetella/patogenicidade , Infecções por Bordetella/epidemiologia , Infecções por Bordetella/microbiologia , Cílios/microbiologia , DNA Bacteriano/análise , Camundongos , Camundongos Endogâmicos C57BL , Depuração Mucociliar , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Análise de Sequência de DNA , Traqueia/metabolismo , Traqueia/patologia
15.
Front Behav Neurosci ; 12: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615881

RESUMO

Previously, we have shown that the transcription factor nuclear factor interleukin (NF-IL)6 can be used as an activation marker for inflammatory lipopolysaccharide (LPS)-induced and psychological novel environment stress (NES) in the rat brain. Here, we aimed to investigate age dependent changes of hypothalamic and pituitary responses to NES (cage switch) or LPS (100 µg/kg) in 2 and 24 months old rats. Animals were sacrificed at specific time points, blood and brains withdrawn and analyzed using immunohistochemistry, RT-PCR and bioassays. In the old rats, telemetric recording revealed that NES-induced hyperthermia was enhanced and prolonged compared to the young group. Plasma IL-6 levels remained unchanged and hypothalamic IL-6 mRNA expression was increased in the old rats. Interestingly, this response was accompanied by a significant upregulation of corticotropin-releasing hormone mRNA expression only in young rats after NES and overall higher plasma corticosterone levels in all aged animals. Immunohistochemical analysis revealed a significant upregulation of NF-IL6-positive cells in the pituitary after NES or LPS-injection. In another important brain structure implicated in immune-to-brain communication, namely, in the median eminence (ME), NF-IL6-immunoreactivity was increased in aged animals, while the young group showed just minor activation after LPS-stimulation. Interestingly, we found a higher amount of NF-IL6-CD68-positive cells in the posterior pituitary of old rats compared to the young counterparts. Moreover, aging affected the regulation of cytokine interaction in the anterior pituitary lobe. LPS-treatment significantly enhanced the secretion of the cytokines IL-6 and TNFα into supernatants of primary cell cultures of the anterior pituitary. Furthermore, in the young rats, incubation with IL-6 and IL-10 antibodies before LPS-stimulation led to a robust decrease of IL-6 production and an increase of TNFα production by the pituitary cells. In the old rats, this specific cytokine interaction could not be detected. Overall, the present results revealed strong differences in the activation patterns and pathways between old and young rats after both stressors. The prolonged hyperthermic and inflammatory response seen in aged animals seems to be linked to dysregulated pituitary cytokine interactions and brain cell activation (NF-IL6) in the hypothalamus-pituitary-adrenal axis.

16.
J Biol Chem ; 293(18): 6647-6658, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29576549

RESUMO

The epithelial sodium channel (ENaC) is a critical regulator of vertebrate electrolyte homeostasis. ENaC is the only constitutively open ion channel in the degenerin/ENaC protein family, and its expression, membrane abundance, and open probability therefore are tightly controlled. The canonical ENaC is composed of three subunits (α, ß, and γ), but a fourth δ-subunit may replace α and form atypical δßγ-ENaCs. Using Xenopus laevis as a model, here we found that mRNAs of the α- and δ-subunits are differentially expressed in different tissues and that δ-ENaC predominantly is present in the urogenital tract. Using whole-cell and single-channel electrophysiology of oocytes expressing Xenopus αßγ- or δßγ-ENaC, we demonstrate that the presence of the δ-subunit enhances the amount of current generated by ENaC due to an increased open probability, but also changes current into a transient form. Activity of canonical ENaCs is critically dependent on proteolytic processing of the α- and γ-subunits, and immunoblotting with epitope-tagged ENaC subunits indicated that, unlike α-ENaC, the δ-subunit does not undergo proteolytic maturation by the endogenous protease furin. Furthermore, currents generated by δßγ-ENaC were insensitive to activation by extracellular chymotrypsin, and presence of the δ-subunit prevented cleavage of γ-ENaC at the cell surface. Our findings suggest that subunit composition constitutes an additional level of ENaC regulation, and we propose that the Xenopus δ-ENaC subunit represents a functional example that demonstrates the importance of proteolytic maturation during ENaC evolution.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Membrana Celular/metabolismo , Quimotripsina/metabolismo , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Furina/metabolismo , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Proteólise , RNA Mensageiro/genética , Transdução de Sinais , Sistema Urogenital/metabolismo , Xenopus laevis
17.
Sci Rep ; 8(1): 4420, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520074

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
Sci Rep ; 7(1): 3517, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615646

RESUMO

Hydrogen sulfide (H2S) has been recognized as a signalling molecule which affects the activity of ion channels and transporters in epithelial cells. The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial anion channel and a key regulator of electrolyte and fluid homeostasis. In this study, we investigated the regulation of CFTR by H2S. Human CFTR was heterologously expressed in Xenopus oocytes and its activity was electrophysiologically measured by microelectrode recordings. The H2S-forming sulphur salt Na2S as well as the slow-releasing H2S-liberating compound GYY4137 increased transmembrane currents of CFTR-expressing oocytes. Na2S had no effect on native, non-injected oocytes. The effect of Na2S was blocked by the CFTR inhibitor CFTR_inh172, the adenylyl cyclase inhibitor MDL 12330A, and the protein kinase A antagonist cAMPS-Rp. Na2S potentiated CFTR stimulation by forskolin, but not that by IBMX. Na2S enhanced CFTR stimulation by membrane-permeable 8Br-cAMP under inhibition of adenylyl cyclase-mediated cAMP production by MDL 12330A. These data indicate that H2S activates CFTR in Xenopus oocytes by inhibiting phosphodiesterase activity and subsequent stimulation of CFTR by cAMP-dependent protein kinase A. In epithelia, an increased CFTR activity may correspond to a pro-secretory response to H2S which may be endogenously produced by the epithelium or H2S-generating microflora.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Gasotransmissores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Oócitos , Proteínas Recombinantes/metabolismo , Xenopus laevis
19.
Biochem Biophys Res Commun ; 466(3): 468-74, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26365349

RESUMO

The Epithelial Sodium Channel (ENaC) is a heterotrimeric ion channel which can be either formed by assembly of its α-, ß- and γ-subunits or, alternatively, its δ-, ß- and γ-subunits. The physiological function of αßγ-ENaC is well established, but the function of δßγ-ENaC remains elusive. The azo-dye Evans Blue (EvB) has been routinely used to discriminate between the two channel isoforms by decreasing transmembrane currents and amiloride-sensitive current fractions of δßγ-ENaC expressing Xenopus oocytes. Even though these results could be reproduced, it was found by precipitation experiments and spectroscopic methods that the cationic amiloride and the anionic EvB directly interact in solution, forming a strong complex. Thereby a large amount of pharmacologically available amiloride is removed from physiological buffer solutions and the effective amiloride concentration is reduced. This interaction did not occur in the presence of albumin. In microelectrode recordings, EvB was able to abrogate the block of δßγ-ENaC by amiloride or its derivative benzamil. In sum, EvB reduces amiloride-sensitive ion current fractions in electrophysiological experiments. This is not a result of a specific inhibition of δßγ-ENaC but rather represents a pharmacological artefact. EvB should therefore not be used as an inhibitor of δ-ENaC.


Assuntos
Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Azul Evans/farmacologia , Albuminas/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Soluções Tampão , Corantes/farmacologia , Canais Epiteliais de Sódio/metabolismo , Feminino , Humanos , Oócitos/metabolismo , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Soluções , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...